Adaptive Map Training#
Adaptively discover new terms in coefficient basis to add to map using the ATM algorithm of Baptista, et al. 2022.
- Template Parameters:
MemorySpace – Device or host space to work in
- Parameters:
mset0 – vector storing initial (minimal) guess of multiindex sets, corresponding to each dimension. Is changed in-place.
objective – What this map should be adapted to fits
- Returns:
std::shared_ptr<ConditionalMapBase<MemorySpace>> New map according to specifications.
-
struct ATMOptions : public mpart::MapOptions, public mpart::TrainOptions#
Both map and training options combined with special ATM options.
Public Functions
-
inline virtual std::string String() override#
Create a string representation of these options.
- Returns:
std::string
-
ATMOptions() = default#
-
inline ATMOptions(MapOptions mapOpts, TrainOptions trainOpts, MultiIndex maxDegrees_, unsigned int maxPatience_, unsigned int maxSize_)#
Public Members
-
unsigned int maxPatience = 10#
Maximum number of iterations that do not improve error
-
unsigned int maxSize = std::numeric_limits<int>::max()#
Maximum number of coefficients in final expansion (including ALL dimensions of map)
-
MultiIndex maxDegrees#
Multiindex representing the maximum degree in each input dimension
-
inline virtual std::string String() override#