MultiIndex-related routines
MParT.MultiIndex — TypeMultiIndex(A::AbstractVector{<:Int})MultiIndex defines the order of one term of a function expansion for each dimensions.
Example
julia> degrees = [3,2,1]; # Represents polynomial basis function similar to x^3y^2z^1
julia> midx = MultiIndex(degrees);
julia> midx[3]
0x00000001See also MultiIndexSet, FixedMultiIndexSet, Fix
MParT.MultiIndexSet — TypeMultiIndexSet(A::AbstractVecOrMat{<:Integer})Create a set of MultiIndices from the rows of A.
These indices represent a basis for a multivariate expansion or, further, monotone expansion. Each element of the set is a MultiIndex representing one basis function via the degrees in each dimension.
Example
julia> # Functions like: c_1xy^2z^3 + c_2xyz + c_3
julia> A = [1 2 3;1 1 1; 0 0 0];
julia> mset = MultiIndexSet(A);See also MultiIndex, FixedMultiIndexSet, Fix
MParT.FixedMultiIndexSet — TypeFixedMultiIndexSet(dim::Int, p::Int)Creates a FixedMultiIndexSet with dimension dim and total order p.
A FixedMultiIndexSet is just a compressed, efficient way of representing a MultiIndexSet, but without as many bells and whistles.
See also: MultiIndex, MultiIndexSet
MParT.Fix — FunctionFix(mset::MultiIndexSet, compress::Bool = true)Take mset and turn it into a FixedMultiIndexSet that can be compressed.
See also MultiIndex, MultiIndexSet, FixedMultiIndexSet
MParT.CreateTotalOrder — FunctionCreateTotalOrder(dim::Int, p::Int)Creates a total order p MultiIndexSet object in dimension dim.
See also: MultiIndexSet
MParT.Size — FunctionSize(mset::MultiIndexSet)Number of MultiIndex objects in a MultiIndexSet mset.